

Stormwater Retrofit Opportunities on Public Land in Harrisonburg

> September 2013 FINAL

PREPARED FOR: City of Harrisonburg, VA

PREPARED BY:

8390 Main Street, 2nd Floor Ellicott City, MD 21043 www.cwp.org

ACKNOWLEDGEMENTS

The project team from the Center for Watershed Protection (CWP) would like to acknowledge the significant contributions from Thanh Dang (Harrisonburg), Abe Kaufman and Dale Chestnut (JMU), David Nichols (Bridgewater), and Erin Yancey (Central Shenandoah Planning District Commission). Each provided coordination, guidance, and insight that allowed this project to be successful.

This study received additional support from the following:

Rick Altizer (Harrisonburg) Ray Bailey (Harrisonburg) Danny DeLong (Harrisonburg) Tanya Denckla-Cobb (UVA Institute for Environmental Negotiation) Jeremy Harold (Harrisonburg) Tom Hartman (Harrisonburg) CJ Mitchem (CSPDC) Megan O'Gorek (Shenandoah SWCD) Jerry Prey (Harrisonburg) Natalie Raffol (UVA Institute for Environmental Negotiation) Dan Rublee (Harrisonburg) Wes Runion (Harrisonburg) Tara Sieber (VADEQ) John Ware (Bridgewater) Tara Willging (VADEQ)

The CWP project team consisted of the following individuals:

Joe Battiata David Hirschman Lisa Fraley-McNeal Chris Swann Laurel Woodworth

We are grateful to the Central Shenandoah Planning District Commission for securing a Local Government Technical Assistance grant from the National Fish and Wildlife Foundation (NFWF) to fund this project, Grant # 0600.12.038466.

NFWF Disclaimer: The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government or the National Fish and Wildlife Foundation. Mention of trade names of commercial products does not constitute their endorsement by the U.S. Government or the National Fish and Wildlife Foundation.

Table of Contents

ACKNOWLEDGEMENTS	2
SECTION 1. PROJECT BACKGROUND	5
1.1 Purpose	5
SECTION 2. RETROFIT INVENTORY PROTOCOLS	7
2.1 Site Selection	7
2.2 Field Methodology	7
2.3 Retrofit Types	9
SECTION 3. EVALUATION & RANKING	13
3.1 Evaluation Method	13
3.2 Ranking Process	13
Step 1: Selecting Screening Factors	13
Step 2: Scoring Each Candidate Practice Based on the Screening Factors	16
Step 3: Ranking the Projects	20
SECTION 4. STUDY RESULTS	22
4.1 Summary of Projects	22
4.2 Trends in the Three Communities	24
SECTION 5. RECOMMENDATIONS	26
5.1 Further Considerations	26
Expanding the Search for Retrofit Options	26
Investigating the Full Range of Practices	26
Stormwater Design Considerations for Karst	26
Keeping in Touch With DEQ About MS4 Reporting	27
5.2 Options for Achieving Required Load Reductions	27
REFERENCES	33
APPENDIX A: FIELD FORMS	A-1
APPENDIX B: HARRISONBURG RETROFIT CONCEPTS RANKING TABLE	B-1
APPENDIX C: REGENERATIVE STORMWATER CONVEYANCE SYSTEMS	C-1
APPENDIX D: RETROFIT MAPS, SUMMARIES, AND FIELD FORMS	D-1

List of Figures

Figure 1.	Field crews searc	ching for po	tential stormwate	r retrofits	8
inguic i.	i iciu ci civo scui	ining for po	cential scorniwate		

List of Tables

Table 1. Examples of Stormwater Retrofit Practices	10
Table 2. Screening Factors Used for Retrofit Scoring	15
Table 3. Description of Retrofit Spreadsheet Inputs	17
Table 4. Documentation of Calculations in the Spreadsheet	18
Table 5. Unit Construction Costs and RR/ST Designation for Various Retrofit Practices	20
Page 3	

Table 6. All Projects Identified in Harrisonburg 22
Table 7. Summary of 10 Top-Ranked Retrofit Sites for Harrisonburg
Table 8. Cost-Effectiveness of New Retrofits vs. Conversions/Enhancements
Table 9. Percent of Load Reductions & Costs for "Heroic" Projects Compared to All Retrofits
From This Study For Each Jurisdiction
Table 10. Harrisonburg MS4 Required Load Reductions
Table 11. Harrisonburg: Implementation of Retrofits Compared to Required Load Reductions
Table 12. Overview of Possible MS4 Load Reduction Scenarios for Harrisonburg
Table 13. City of Harrisonburg + JMU Combined MS4 Required Load Reductions
Table 14. City of Harrisonburg + JMU: Implementation of Retrofits Compared to Combined
Required Load Reductions

SECTION 1. PROJECT BACKGROUND

1.1 Purpose

The intent of this project was to conduct a stormwater retrofit inventory for three neighboring communities in Virginia's Shenandoah Valley: the City of Harrisonburg, James Madison University, and the Town of Bridgewater. This study will help each of these communities determine the level to which stormwater retrofits on public properties can reduce urban nutrients and sediment. This report is tailored specifically to the study findings for Harrisonburg. In addition to serving as an inventory of potential retrofits, the report also quantifies costs of retrofit construction and pollutant removal, and suggests several scenarios for incorporating retrofits into the Small Municipal Separate Storm Sewer System (MS4) program and TMDL Action Plans.

"Stormwater retrofitting" refers to the practice of installing stormwater management features in places where development has already occurred. In some cases, existing developed land has no stormwater treatment to begin with. In others, older facilities, such as detention ponds, can be upgraded to enhance pollutant removal. A stormwater retrofit study provides an opportunity to look at the developed landscape, analyze how it changed as properties were developed, and imagine how it can be modified to better manage the flow of water that runs off it and to local streams.

This is not just an academic exercise. Runoff from existing developed properties is a major source of pollutants and increased storm flow that leads to the erosion of stream banks and degradation of waterways. Beyond these purposes, stormwater retrofits also foster innovation and create excitement in a community and are often used for educational purposes. People become excited about taking simple actions to promote clean water and to "green up" school campuses, parks, and other public buildings. Often, a few stormwater retrofits on public land can shift the way that stormwater is managed across the entire community, with developers and even homeowners adapting ideas to their own uses.

Controlling urban runoff is also the goal of evolving regulatory programs, such as the EPAdriven Chesapeake Bay Total Maximum Daily Load (TMDL) effort to reduce non-point sources of pollution to the Bay. In an effort to achieve the goals of the Bay TMDL, Virginia's Small MS4General Permit calls for regulated jurisdictions to achieve 5% of the total phosphorous, nitrogen, and sediment load reductions outlined as part of Virginia's Watershed Implementation Plans (WIP) within the current MS4 permit cycle (2013 – 2018). The remaining pollutant reductions must be achieved in subsequent permit cycles.

In March 2013, field teams consisting of CWP staff and Harrisonburg/JMU/Bridgewater staff fanned out across nearly 100 publically-owned sites (51 in Harrisonburg, 35 at JMU, and 13 in Bridgewater,). The teams investigated how to use the landscape to reduce, capture, and filter runoff that otherwise flows directly to nearby streams. This report describes the field investigation process and the analysis that followed and presents a prioritized list of stormwater retrofit concepts for Harrisonburg to consider constructing in the near term and as part of long-range planning.

This retrofit assessment was made possible through a grant from the National Fish and Wildlife Foundation's Chesapeake Bay Local Government Assistance Program. The grant proposal was secured by the Central Shenandoah Planning District Commission on behalf of the City of Harrisonburg, Town of Bridgewater, and James Madison University. This grant secured technical assistance from the Center for Watershed Protection to work on retrofit investigations with each of these jurisdictions. As MS4s, Harrisonburg, JMU, and Bridgewater have benefitted from working together through this project as they have been able to communicate more frequently about stormwater program issues and retrofitting strategies.

SECTION 2. RETROFIT INVENTORY PROTOCOLS

2.1 Site Selection

Each partner first developed a list of potential public property retrofit sites in their jurisdiction to assess in the field. Based on available mapping layers and stormwater BMP data, CWP staff then identified additional retrofit sites. This screening was based on public ownership and/or presence of existing detention or extended detention basins that may benefit from retrofitting.

In Harrisonburg, additional sites identified by CWP included all schools, a majority of cityowned land, and detention basins identified as public from the City's BMP data. City-owned land with limited opportunities for retrofitting (i.e., parking garages and sites with limited space) were excluded. Each list of field sites was finalized in consultation with each partner and a unique ID was assigned to each site. A total of 48 sites in Harrisonburg were preidentified for field inspection. At James Madison University, additional sites identified by CWP included detention and extended detention basins that may benefit from retrofitting. A total of 35 sites at JMU were pre-selected to visit during field work. Finally, the retrofit sites suggested by Bridgewater staff included all town and public properties and no additional sites were identified by CWP. A total of 13 sites were selected for field inspection in Bridgewater.

2.2 Field Methodology

Using geographic information systems (GIS) data provided by each partner, CWP staff created field maps with recent aerial images, roads, topography, stormwater infrastructure, utilities, and streams. (Note: Maps for Bridgewater only contained aerial imagery and road locations.) These maps were used to identify the specific drainage areas of each potential retrofit and to make note of details, such as the direction of flow and discharge points for runoff.

Fieldwork was conducted from March 19-21, 2013. Many people were involved in conducting the retrofit field assessments. The following is a list of participants:

- Bridgewater: David Nichols and John Ware
- James Madison University: Dale Chestnut and Abe Kaufman
- *Harrisonburg:* Rick Altizer, Ray Bailey, Thanh Dang, Danny DeLong, Jeremy Harold, Tom Hartman, Jerry Prey, Wes Runion
- Central Shenandoah Planning District Commission: CJ Mitchem
- Virginia Department of Environmental Quality: Tara Sieber and Tara Willging
- Shenandoah Soil and Water Conservation District: Megan O'Gorek
- Institute for Environmental Negotiation (UVA): Tanya Denckla-Cobb, Natalie Raffol
- *Center for Watershed Protection:* Joe Battiata, Lisa Fraley-McNeal, David Hirschman, Chris Swann, Laurel Woodworth

Each of five field teams was led by a CWP staff person experienced with retrofitting. The latest Retrofit Reconnaissance Investigation (RRI) form was used (see **Appendix A**), and

methods outlined in CWP's *Urban Stormwater Retrofit Practices* were used as guidance (CWP, 2007). Using the RRI form, the teams evaluated the stormwater retrofit potential of each candidate site by analyzing existing drainage patterns, drainage areas, impervious cover, available space, and site constraints (e.g., conflicts with existing utilities and land uses, site access, and potential impacts to natural areas). Unless there were obvious site constraints and/or evidence that a particular stormwater retrofit would offer few or no watershed benefits, a stormwater retrofit concept was developed for each candidate project site, including a sketch plan when appropriate. Occasionally, other issues such as stream bank erosion, stormwater outfall pipe erosion, pollution hotspots, and impacted buffers were found in the field. The field crews noted these problems and potential solutions on different types of forms, also found in **Appendix A**.

Figure 1. Field crews searching for potential stormwater retrofits.

More detail on conducting the Retrofit Reconnaissance Inventory can be obtained directly from the guidance manual, Urban Stormwater Retrofit Practices (CWP, 2007). This publication contains extensive information on identifying and evaluating potential retrofit locations within a subwatershed as well as profile sheets on individual retrofit designs and guidance on construction, maintenance, and costs.

After field work was completed, CWP staff reviewed all field forms for completeness and compiled the data for each retrofit concept into a combined spreadsheet. This allowed evaluation of each retrofit to determine the nutrient and runoff reduction capabilities, planning-level cost, and cost efficiency. This spreadsheet also served as a platform for scoring and ranking each retrofit concept. See **Section 3** for more information about this evaluation process. Completed field forms for each site can be found in **Appendix D**, along with photos and maps of the project locations.

2.3 Retrofit Types

A wide variety of stormwater management retrofit options were considered while inventorying these public properties. This project followed the conventions in *Recommendations of the Expert Panel to Define Removal Rates for Urban Stormwater Retrofit Projects* (Schueler and Lane, 2012) by assigning retrofits to one of three categories:

New Retrofits: Retrofit projects that create storage to reduce nutrients from existing developed land that is not currently receiving any stormwater treatment.

BMP Conversions: Retrofits of older, existing stormwater ponds to employ more effective treatment mechanism(s), such as converting a dry pond to a constructed wetland.

BMP Enhancements: Retrofits that utilize the existing treatment mechanism in an existing BMP, but improve removal by increasing storage volume or hydraulic residence time.

The report includes a fourth category, BMP Restoration, which includes major maintenance upgrades to existing BMPs that have failed or lost their original treatment capacity. This category was not included in the study, since all projects involving an existing BMP aimed to maximize pollutant removal by including a conversion or enhancement of the existing practice. Some of the projects do include restoring treatment capacity, but that was factored into the conversion or enhancement concept design.

The project also had a category for Other Practices. These include practices such as pollution prevention, landscape maintenance, tree planting and reforestation, and outfall stabilization. **Table 1** shows examples and descriptions of the types of stormwater practices that were considered as options for retrofitting the subject properties.

Table 1. Examples of Stormwater Retrofit Practices					
New Retrofits	Bioretention or Bioswale		Landscaped practice that uses plants, mulch, and soil to treat runoff. Most have underdrain pipes to ensure water only ponds temporarily. Common in parking lot islands and edges and as part of commercial site plans.		
	Rain Garden		Similar to bioretention/bioswale, but generally smaller and less expensive. Designed to treat runoff from rooftops, driveways, and yard areas. To keep design and construction simple, underdrains and gravel are not generally used.		
	Wet Swale		Linear wetland cells that intercept shallow groundwater to maintain a wetland plant community. Saturated soils support wetland vegetation, which provides an ideal environment for gravitational settling, biological uptake, and microbial activity.		
	Dry Swale		Also similar to bioretention/bioswale. Main difference is that the dry swale has a longitudinal slope to fit site conditions and may be narrower than typical bioretention. Sometimes check dams are used to slow water down and create temporary ponding cells.		
	Filter Strip		Vegetated surfaces that are designed to treat sheet flow from adjacent surfaces. Filter strips function by slowing runoff velocities and filtering out sediment and other pollutants, and by providing some infiltration into underlying soils.		
	Filtering Practice		Stormwater filters capture, temporarily store, and treat stormwater runoff by passing it through an engineered filter media, collecting it in an underdrain and then returning it back to the storm drain system. The filter consists of two chambers; the first is devoted to settling, and the second serves as a filter bed (with sand or an organic filtering media).		

Stormwater Retrofit Opportunities Harrisonburg, VA

Table 1. Exa	amples of Stormy	water Retrofit Practices	
	Infiltration		Infiltration practices use temporary surface or underground storage to allow incoming stormwater runoff to infiltrate into underlying soils. These practices are suitable for use in areas where <i>measured</i> soil permeability rates exceed 1/2 inch per hour.
	Constructed Wetland		Constructed wetlands are shallow depressions that receive stormwater inputs for treatment. Wetlands are typically less than one foot deep (although they have deeper pools at the forebay and micropool) and possess variable microtopography to promote dense and diverse wetland cover.
	*Regenerative Stormwater Conveyance		Linear open channel systems used at stormwater outfalls that convey and treat stormwater runoff in a stable manner. A series of shallow pools, an
	*See App. C for longer description		underlying sand bed, and native vegetation provide stability, even during large storm events. These
	(Photo by: Keith Underwood)	1 4	wooded ravine outfalls in Anne Arundel County, MD.
	Impervious Disconnection		Disconnecting rooftop or other impervious surfaces so that runoff goes through vegetated areas instead of directly to storm sewer, driveway, parking lot, etc. Can be "simple" disconnection to grass (as shown in photo), or disconnection to rain garden, rain barrel, or soil-amended area.
	Stormwater Planter		Stormwater planters (also known as vegetative box filters or foundation planters) take advantage of limited space available for stormwater treatment by placing a soil filter in a container, often along buildings at the bottom of roof downspouts.
	Rainwater Harvesting		Collection of rooftop water in tank or cistern for later use for outdoor or indoor applications, including irrigation, washing, cooling systems, toilet flushing, laundry, etc. Cisterns can be above-ground or underground.

Table 1. Examples of Stormwater Retrofit Practices				
	Permeable Pavement		Pavement made from permeable materials, such as interlocking paver blocks, permeable concrete, and permeable asphalt. Storage for runoff is provided below pavement surface in a stone or gravel layer, and water either infiltrates into the ground or drains out slowly through underdrain pipes.	
BMP Conversion/Enhancement			Existing stormwater ponds are either converted into a different BMP that employs more effective treatment mechanisms, or enhanced by increasing treatment volume and/or increasing hydraulic retention time. Most pond retrofits involve the conversion of older ponds into a constructed wetland or wet pond.	
Other Practices	Re-Vegetation / Tree-planting		Vegetating turf areas with trees and shrubs to restore water retention capacity and provide other services, such as shade and habitat. In some cases, soil amendments are needed prior to re-vegetation. Deep tilling, or "sub-soiling," of soil prior to planting can also greatly improve infiltration.	
	Outfall Protection		Adding stone, rip-rap, plunge pools, check dams, or vegetated conveyance channels to pipe outfalls that are eroding and causing damage to receiving streams.	
	Stream Restoration		Repairing stream bank erosion and/or reconnecting stream flow to the floodplain.	
	Pollution Prevention		Variety of management practices for spill response, materials storage, landscape maintenance, dumpster management, disposal of wash water and wastewater, vehicle maintenance, and employee training to keep pollutants out of stormwater runoff and waterways.	

SECTION 3. EVALUATION & RANKING

3.1 Evaluation Method

Evaluation of the candidate retrofit projects involved:

- 1. Selecting "Screening Factors" that provide objective and subjective assessment of the relative value of candidate retrofit practices.
- 2. Scoring each candidate practice based on the Screening Factors.
- 3. Ranking the practices based on their respective scores.

This section will summarize the methodologies and computations involved in the scoring and ranking process. First, however, it is important to note several key objectives and caveats for this process:

- Since the overall intent of the project was to identify and evaluate retrofits in the context of numerical targets in the MS4 permits and Watershed Implementation Plans (WIPs), the scoring process, to the extent possible, used methods developed by the Chesapeake Bay Program to assign pollutant removal efficiencies to various BMPs. Of particular importance are the methods in *Recommendations of the Expert Panel to Define Removal Rates for Urban Stormwater Retrofit Projects* (Schueler and Lane, 2012). A potential significant caveat is that the state of Virginia (DEQ) has yet to define exactly the methods that MS4s are to use to report BMP pollutant removals (aside from inputting BMP implementation data into the VAST tool) and what role the Expert Panel methods will play in the Virginia system. As of the writing of this report, DEQ has assembled a Stakeholder Advisory Group to address this and other issues associated with the TMDL Action Plans. As such, the Expert Panel methods, as interpreted by the CWP project team, are the most up-to-date process for assigning retrofit pollutant removal rates.
- As noted, the Expert Panel report required some interpretation by the project team in order to apply the methods to specific projects. It was beyond the scope of the Expert Panel to envision every retrofit scenario, so the project team had to "fill in the blanks" in some cases. This section of the report documents the methods and computation procedures used to do this.

3.2 Ranking Process

The following sections provide detailed descriptions of each of the 3 steps outlined above.

Step 1: Selecting Screening Factors

Screening factors are metrics that define the overall value of a retrofit project. Since "overall value" is relative, the selection of screening factors involves careful vetting and analysis of the outcomes that are most important to a particular local program. Screening factors can fall into two general categories:

- 1. <u>Calculated/Objective</u>: Some screening factors are based on calculations derived from retrofit concepts. Calculation inputs can include drainage area and associated land cover to the retrofit site, potential storage volume provided by the retrofit (as measured in the field), and pollutant removal rates assigned to particular BMPs.
- 2. <u>Subjective:</u> Some screening factors are subjective and qualitative, but reflect important values for the program. Examples can include: value for education and outreach, public visibility, level of maintenance required, community acceptance, etc.

Generally, four to eight screening factors are selected. Often, the various factors are assigned "weights" so that each project can be scored on a 100-point scale.

In order to select screening factors for this project, a joint meeting was held with project representatives from Bridgewater, Harrisonburg, and JMU on April 25, 2013. At this meeting, potential screening factors were presented and discussed. There was a good deal of agreement among project participants, with only slight differences in the weighting of the various factors.

Table 2 portrays the screening factors selected for Harrisonburg and how each factor is assigned a maximum score to produce a maximum possible overall score of 100 points. The first two factors – Cost Effectiveness and Total Phosphorus removal – are calculated and reflect the importance of pollutant removal and cost for the management of MS4 programs. As such, these two factors are weighted the heaviest ("primary" factors), with each having a maximum score of 35. The remaining three factors – Maintenance Burden, Utility and Site Constraints, and Aesthetics/Safety – are subjective, and can be considered "secondary" factors with maximum scores in the 5 to 15 point range.

Table 2. Screening Factors Used for Retrofit Scoring				
Screening Factor	Description	Scoring		
Pounds of Total Phosphorus (TP) Removed – TP used as indicator for other pollutants	Screening factor that combines influence of total drainage area treated and pollutant removal efficiency of proposed retrofit.	Each retrofit scored as % of best TP removal x 35 Maximum Score = 35		
Cost Effectiveness (\$ per pound of TP removed)	Cost of construction per pound of total phosphorus removed by the retrofit	Each retrofit scored as % of best cost effectiveness x 35 Maximum Score = 35		
	Low maintenance retrofits rely on vegetation and passive treatment mechanisms (e.g., most stream restoration projects). It should be	Low maintenance burden = 15		
Maintenance Burden (Long-term)	understood that ALL practices may have initial "high level" maintenance period to get plants established, control invasives, etc. As such, this metric measures long-term maintenance requirements. Retrofits with High maintenance burden may require removing debris after most storm events or have risk of heavy sediment loading, for example.	Medium maintenance burden = 7.5		
		High maintenance burden = 0		
	Presence and significance of utility conflicts or other site	No apparent constraints = 10		
Potential Utility or Site Constraints	constraints, such as limited space, required grading, or	Access somewhat constrained or utilities present but relatively easy to move (e.g., electric or phone lines) = 5		
		Poor access, major grading required, or major utilities must be moved (e.g., sewer) = 0		
	Since these projects are on public land, this factor considers issues such as	Practice adds landscaping and/or would enhance aesthetics at the site = 5		
Aesthetics and Safety	standing water in close proximity to foot traffic, steep drop-offs or slopes, etc. The	Practice neither detracts from aesthetic/safety nor adds much in the way of value = 2.5		
	factor also considers projects that can enhance aesthetics by adding landscaping.	Practice would pose an aesthetic or safety issue based on the practice type and location= ${f 0}$		
		Total Maximum Score = 100		

Step 2: Scoring Each Candidate Practice Based on the Screening Factors

Scoring each individual retrofit concept was accomplished by using a unique spreadsheet for each jurisdiction. The spreadsheet includes input cells populated by measurements taken in the field (e.g., potential practice surface area) and/or derived from GIS (e.g., drainage area, impervious cover). The spreadsheet uses these data to perform certain computations that relate to the screening factors discussed above. **Appendix B** contains a table of the significant fields from the completed spreadsheets.

The three tables that follow provide documentation for the calculations and scoring method:

- **Table 3** lists and describes the inputs to the spreadsheet. The table details inputs for all retrofit projects, plus additional inputs for BMP conversion and enhancement projects.
- **Table 4** documents the calculations performed by the spreadsheet and how these are used to assign scores for the selected screening factors.
- **Table 5** shows unit cost data used to score the cost-effectiveness screening factor, as well as whether the practice is categorized in the Expert Panel report as Runoff Reduction (RR) or Stormwater Treatment (ST).

Table 3. Description of Retrofit Spreadsheet Inputs				
ALL PRACTICES – GENERAL INPUT DATA				
CWP Lead Staff	Chris Swann (CPS), David Hirschman (DJH), Joe Battiata (JGB), Laurel Woodworth			
Person	(LW), Lisa Fraley-McNeal (LFM).			
Unique Site ID	Site identifier that starts with B (Bridgewater), H (Harrisonburg), J (JMU). For			
Unique Site iD	example, H8. Multiple retrofit projects on a single site are labeled H8-A, H8-B, etc.			
Site Description	Site name and/or location within a larger site.			
Drainage Area	Drainage area to the retrofit, in acres.			
Impervious Cover	Impervious cover within the drainage area, in acres.			
	Generally practices from Table 2 in Expert Panel report (Schueler and Lane, 2012).			
Proposed Practice	Based on the report, practices are categorized as either "Runoff Reduction" (RR) or			
110poseu 11aettee	"Stormwater Treatment" (ST). JMU also had a stream restoration project, so this			
	practice was added to the list of practice types.			
	Available surface footprint and depth to install the retrofit practice. Depending on the			
Retrofit Practice	practice and site, this may include length, width, ponding depth, filter media depth			
Dimensions	(e.g., for bioretention), gravel depth (e.g., for underdrains). Depth can be constrained			
by the elevation of existing storm sewer inlets, topography, etc.				
CONVERSIONS & EN	HANCEMENTS – ADDITIONAL INPUT DATA			
	Choices include Dry Detention Pond (originally designed only for peak rate control) or			
Existing Practice	Extended Detention (ED) Pond (designed for both peak rate control and water quality			
	treatment).			
	Based on existing conditions, some ponds exhibit performance issues, such as short-			
	circuiting or by-passing of the treatment area, storage filled with sediment, clogging, or			
	the practice being undersized. Depending on the severity of the problem, a			
	performance discount of 0, 0.25, 0.5, 0.75, or 1.0 can be assigned to existing ponds,			
Pre-Retrofit	with 0 being no performance issue and 1 being total practice failure. A column is also			
Performance	assigned to document the particular performance issue. Enhancement projects can			
Discount & issue	also assign a Post-Retrollt Performance Discount (for example, even after the retrollt,			
	the practice is undersized). The reason this Post-Retroit discounts apply only to			
	Export Papel report and thus treatment volume is not used to scale pellutant removal			
	performance			
	performance.			

Table 4. Docum	nentation of Calculat	ions in the S	preadsheet	d ranking process (see 1	Table 2)	
Target Water Target Water					om 1" of	
Quality Volume	Target WQV = 1" x Rv x DA	4 x 3630				
(WQv)	Where: Target WQV = Target v Rv = Composite runoff 0.22) DA = Drainage area (a 3630 = Conversion fact	water quality vol coefficient in the cres) tor	lume (cubic feet) e drainage area = (%	5 Impervious x 0.95) x (%	Turf x	
	Often retrofits cannot me	et the full target	water quality volu	me storage due to site	the	
	practice based on practic	e dimensions an	d storage layers, as	measured in the field.	' the	
Total Volume	Total Volume = Surface Po	onding + Soil Me	dia Storage + Under	drain Gravel Storage		
Provided By	Assumptions:					
Retrofit Practice	Soil media porosity = 0.25 Gravel porosity = 0.40 , as per VA Bioretention specification (No. 9)					
	Side slopes = 3:1					
	NOTE: The spreadsheet al the first two calculations	so calculates the	"% of the Target W	Q_V " stored in the practice	e, using	
These are the pollutant loads generated by the land covers in the drainage area retrofit or existing practice. Loading rates for TP, TN, and TSS were derived fro Edge-Of-Stream rates from Phase 5.3.2 of the Chesapeake Bay Model for the Po Basin.				the drainage area <u>with</u> S were derived from 20 y Model for the Potomac	<u>out any</u> 09 c River	
Drainage Area	Pollutant Load = (Urban Impervious x LR) + (Urban Pervious x LR)					
Pollutant Loads	LR = Loading Rate (lbs/acre per yr) from table below					
for TP, TN, TSS		ТР	TN	TSS		
	Regulated Urban Impervious	1.62	16.86	1,171.32		
	Regulated Urban Pervious	0.41	10.07	175.8		
Runoff Depth	This value is the "X-axis"	input to the Per	formance Curves in	the Expert Panel report	(see	
Impervious Acre	Retrofit Storage in gere in	chas /Importiou	j. s acros in drainaaa			
Pollutant Removal for New Retrofits (lbs per year)	Retrojit storage in acre-inches/Impervious acres in drainage areaThis computation replicates the performance curves in the Expert Panel report. The curvesgenerate a % removal for TP, TN, and TSS and then applies the % removal to the pollutantload generated by the drainage area. There are curves for Runoff Reduction (RR) andStormwater Treatment (ST) practices. RR practices treat stormwater through sometreatment mechanism, such as filtering or settling, but also reduce the overall volume ofrunoff exiting the practice. ST practices accomplish just the former. Table 5 includes whichpractices are categorized as RR or ST respectively					

	An example of a performance curve equation is shown below for RR practice TP removal:					
	TP Removal % = $0.0304x^5 + 0.2619x^4 + 0.9161x^3 - 1.6837x^2 + 1.7072x - 0.0091$					
	There was one stream restoration project at JMU (Arboretum, J35). Pollutant removals for this project were based on the interim rates in the Stream Restoration Expert Panel report (Schueler and Stack, 2013) and a restoration length of 700 linear feet. ¹ The provisional rates in lbs/ft/year are: TP = 0.068; TN = 0.20; TSS = 310 (NOTE: for TSS, the actual rate is closer to 55 lbs/ft/year since a delivery factor of around 0.175 is applied). It is important to note that actual rates for the project will be based on one of the three protocols in the Expert Panel report.					
Pollutant Removal for Conversions & Enhancements (lbs per year)	In the Expert Panel report, so may vary considerably from the interim projections. For Conversions & Enhancements, there is an extra step to calculate the "Credited Pollutant Removal." This is the removal accomplished by the retrofit minus the removal assigned to the existing practice (with relevant performance discounts). Existing practice removal rates are derived from Table A-5 in the Retrofits Expert Panel report (approved CBP rates). It is important to note that, based on the Expert Panel report, post-retrofit rates for Conversions (e.g., converting a dry pond to a constructed wetland) DO use the performance curves, but post-retrofit rates for Enhancements still use Table A-5 rates. ² Conversion Credited Pollutant Removal = Conversion Removal from Performance Curves – Existing Practice Removal from Table A-5 Enhancement Credited Pollutant Removal = Enhancement Removal from Table A-5 – Existing practice removal x Difference between pre- and post-retrofit performance discounts. Table A-5 (undiscounted) rates are listed in the table below (lbs/acre per yr): Image: Dry Datention			tant to cates s). nce e A-5 ting		
		Pond Dry ED Pond	20	20	60	-
Retrofit Cost	These are planning-level cost for the retrofit type, using unit construction costs (\$/per cubic foot treated) from available studies. With the caveat that cost data are notoriously variable, the project team used the most up-to-date cost data from the Bay Watershed and elsewhere. The unit costs were derived from a variety sources, including JRA (2013), King & Hagan (2011), CWP (2007), and, where available, actual construction bids for retrofit projects (see, for example, CWP, 2011). These represent reasonable planning-level costs, but these data can be modified using local cost data. Also, it is important to note that these costs are construction costs and NOT BMP life-cycle costs. This is because construction costs are easier to ascertain and have less "scatter," so represent a more reliable metric to compare projects. Life-cycle costs include project planning and permitting, administration, long-term inspection and maintenance, and other costs. Information on life-cycle BMP costs is available from WVDEP (2012), King & Hagan (2011), and WERF (2009), among other sources.					
Cost-	TP w	= <i>Cubic Foot Treated ?</i> as used for this calcu	llation since it is the l	<i>ost from Table 5</i> keystone pollutant fo	or the Virginia regulat	tions.
Effectiveness (\$/lb of TP removed per year)	Cost	TP was used for this calculation since it is the keystone pollutant for the Virginia regulations. Cost Effectiveness in \$ = Retrofit Cost/lbs of TP Removed by Retrofit				

¹ A proposal by Ecosystem Services, LLC (May 1, 2013) notes that there is approximately 1,400 linear feet of stream channel in this reach. A conservative estimate was made that the stream restoration protocols would apply to half of this reach length.

² This is because Enhancements, in theory, do not change the type of the existing practice, and so they are still considered an ED pond (even though the enhancement may add wetland cells, increase the flow path, etc.). Based on the Expert Panel report, dry and ED ponds should not use the performance curves. As such, with the method used in this project, the only net removal for Enhancements is assigning a performance discount to the existing practice and removing the discount, in part or in full, for the Enhancement retrofit.

Practices				
Retrofit Practice	RR or ST	Construction Cost/CF treated		
Bioretention	RR	\$24.46		
Constructed Wetlands	ST	\$12.37		
Dry Swale	RR	\$20.00		
Filtering Practice	ST	\$11.60		
Green Roof	RR	\$170.00		
Infiltration	RR	\$12.68		
Permeable Pavers	RR	\$63.15		
Wet Ponds	ST	\$12.37		
Wet Swale	ST	\$12.37		
Rain Tank	RR	\$15.00		
Stormwater Planter	RR	\$38.05		
Regenerative Stormwater Conveyance*	RR	\$45.00		
Filter Strip	RR	\$6.00		
Stream Restoration		\$12.47		
Conversion & Enhancements		\$3.59		
*See Appendix C for detailed description of this practice.				

Step 3: Ranking the Projects

As a final step, the spreadsheet ranks the candidate retrofit projects within each jurisdiction from highest to lowest score, with the top-scoring project ranked #1. This ranking should not be taken at face value with regard to the final prioritizations of projects, as professional judgment is still required to identify which projects are most important for Harrisonburg to implement. For instance, projects that score high may have hidden "project killers" that reduce their feasibility. These may include overall cost, willingness of the landowner or manager, conflicts with other capital projects, community acceptance, loss of parking spaces, and other factors. Alternately, relatively low-ranking projects can be elevated by local stormwater managers because they can be implemented quickly, linked with other capital projects, and/or be implemented by an eager property manager or department director.

In order to vet the rankings produced by the spreadsheets, another meeting was held with the MS4 project representatives on July 3, 2013. At this meeting, the project team reviewed the mechanics of the scoring and ranking spreadsheets, presented the high-ranking projects, Page | 20

and requested that the MS4 representatives review and potentially amend the rankings. <u>Practices with No Score or Rank:</u> It is important to note that some concepts developed during the field inventory were not given a score due to the nature of the practice. These include the following concept types:

- Bank Erosion Repair
- Impacted Buffer Repair
- Landscape Maintenance / Re-forestation
- Outfall Stabilization
- Pollution Prevention
- Filter Strip

These cannot be scored alongside the other practices because they do not create a storage volume and/or they represent changes in maintenance procedures or operations. However, these practices are listed in the overall retrofit inventory and should be equally considered for implementation.

As part of the broader MS4 program planning, some of these practices (e.g., buffer restoration, re-forestation) can be programmed in the VAST tool to compare pollutant removal benefits (see suggested scenarios in Section 5).

SECTION 4. STUDY RESULTS

4.1 Summary of Projects

Table 6 lists all of the 44 projects identified in Harrisonburg, with the rank of each practice, as applicable. To see detailed parameters and values for each project, see **Appendix B**. For summaries and photos of each site, see **Appendix D**. One should be aware that the scores are provided for comparative purposes. For instance, a project with a score in the 40s or 30s may seem like a "throw-away," but can actually be a sensible and achievable project.

Table 6. All Projects Identified in Harrisonburg					
Site ID	Site Description	Proposed Practice	Rank		
H200 alternate	Heritage Oaks Golf Course	Regenerative Stormwater Conveyance*	outlier ¹		
H42	Median on Route 33 Market Street	Regenerative Stormwater Conveyance*	1		
H11	Ralph Sampson Park	Enhancement	2		
H47	Linda Lane Extended	Enhancement	3		
H10-D	Ralph Sampson Park @ b'ball courts	Bioretention	4		
H29-A	Keister Elementary School	Bioretention	5		
H22-A	Westover Park Entrance	Bioretention	7		
H-10A	Lucy Simms Basin	Enhancement	6		
H4	Harrisonburg Electric Commission operations	Bioretention	8		
Н10-С	Lucy Simms Building	Rain Tank	9		
H27	Harrisonburg High School	Bioretention	10		
H37	Harrisonburg Public works yard	Wet Swale	11		
H31	Purcell Park	Bioretention	13		
H29-B	Keister Elementary School	Bioretention	12		
H38-C	Harrisonburg Recycling Center	Bioretention	15		
H201	Fire Station #3	Bioretention	14		
H38-A	Harrisonburg Water & Sewer dept	Bioretention	16		
H50	Old South High St	Bioretention	17		
H45-A	Spotswood Elementary School	Bioretention	20		
H19-B	Department of Community Development	Bioretention	19		
H21	W. Market Street Basin No. 1	Enhancement	18		
H200	Heritage Oaks Golf Course	Bioretention	21		
H8-A	Waterman Elementary School	Bioretention	24		
Н10-В	Lucy Simms Parking Lot	Bioretention	23		
Н8-С	Waterman Elementary School	Dry Swale	22		
H30	Unused Parcel between Rt 11 and Railroad	Bioretention	25		
H38-B	Harrisonburg Public Works storage yard	Bioretention	26		
H28 - Option 3	Maryland Ave Fire Station (truck washing activities)	Bioretention	27		
Н22-В	Westover Park Parking Lot	Bioretention	28		

Н9	Rockingham County Admin Bldg.	Bioretention	29	
H8-B	Waterman Elementary School	Bioretention	30	
H19-A	Department of Community Development	Bioretention	31	
H16	Massanutten Regional Library	Stormwater Planter	32	
H28 - Option 1	Maryland Ave Fire Station Driveway (truck washing activities)	Bioretention	33	
H13-PP	City of Harrisonburg Hose Company #4	Pollution Prevention	N/A	
H14-ER	Harrison Plaza	Bank Erosion	N/A	
H14-IB	Harrison Plaza	Impacted Buffer	N/A	
H15-A	County Court House	Landscape Maintenance	N/A	
H15-B	County Court House	Landscape Maintenance	N/A	
H28 - Option 2	Maryland Ave Fire Station (truck washing activities)	Filter Strip	N/A	
H37-PP	Harrisonburg Public Works	Pollution Prevention	N/A	
H40	Stone Spring Elementary School	Landscape Maintenance	N/A	
H41-0T	A Dream Come True Playground	Outfall Stabilization	N/A	
H45-B	Spotswood Elementary School	Landscape Maintenance	N/A	
*See Appendix C for more detailed description of this type of practice.				

Based on a natural break in the retrofit scores, the 10 highest-scoring practices were considered as the "Top-Ranked" category. **Table 7** summarizes the top-ranked projects for Harrisonburg.

Table 7. Summary of 10 Top-Ranked Retrofit Sites for Harrisonburg							
Site	DA (ac.)	%WQv ¹	TP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)	Construction Cost	\$/lb TP reduced per yr
H200-Alt: Heritage Oaks G.C. RSC	100.00	5%	16.26	308.44	2,493	\$220,320	\$13,552
H42: Market St. Median	88.50	7%	12.22	123.44	9,574	\$740,070	\$60,545
H11: Ralph Sampson Park BMP	0.64	11%	0.18	2.02	436	\$775	\$4,234
H47: Linda Lane Extended	10.25	99%	0.86	12.81	1,483	\$63,503	\$73,472
H10-D: Ralph Sampson Park Courts	4.09	33%	1.50	25.57	439	\$35,701	\$23,776
H29: Keister E.S.	0.60	38%	0.38	3.58	331	\$17,330	\$45,174
H10-A: Lucy Simms Basin	20.16	19%	0.76	12.1	1,158	\$21,540	\$28,344
H22-A: Westover Park Entrance	3.00	56%	1.30	20.88	467	\$48,478	\$37,392
H4: H'burg Electric Commission	2.60	21%	0.94	9.63	743	\$34,259	\$36,493
H10-C: Lucy Simms Bldg.	1.39	100%	1.48	13.47	1,289	\$67,920	\$46,035
TOTALS	231.23		35.88	531.94	18,415	\$1,249,896	\$34,835 ²

¹ This refers to the percent of the Target Water Quality Volume (WQ_V) captured by the practice, as described in **Table** 4. Since these are retrofit projects, they do not have a regulatory obligation to meet 100% of the WQ_V , but it is a good metric by which to compare projects.

² This value is not a Total, per se, but the total cost for the 10 projects divided by the total TP removal.

4.2 Trends in the Three Communities

The following observations are general trends noted for all three jurisdictions.

What Are The Most Cost-Effective Practices?

Based on the scoring metric of cost per pound of Total Phosphorus reduced (costeffectiveness), BMP conversions and enhancements are generally more cost-effective. **Table 8** shows the values for this metric for all three jurisdictions included in the project. Within each jurisdiction, conversions/enhancements are more cost-effective than new retrofits. For all three jurisdictions, the average cost-effectiveness for new retrofits is \$56,279, compared to \$23,647 for conversions/enhancements. As **Table 8** also illustrates, there is a wide range of cost-effectiveness values for both new and conversion/enhancement projects, and project-specific factors (e.g., drainage area, type of project) will dictate this.

Of equal importance, conversions/enhancements, while more cost-effective on average, are limited in number because they rely on a pre-existing practice, while new retrofits can be located across the broader landscape. The three jurisdictions had a total of 64 candidate new retrofit projects on public land, but only 9 conversions/enhancements.

What this means in practical terms is that an MS4 should seek first to convert and/or enhance existing BMPs, but will likely need to blend this with the most cost-effective new retrofits in order to meet load reduction targets. These data also suggest that MS4s would be well-served to seek conversion/enhancement projects for existing practices on private land. While the administrative issues would be more difficult for private land projects (e.g., securing easements, working with landowners), the overall cost-effectiveness may be worth the effort.

What Are "Heroic" Retrofit Projects?

For each jurisdiction, there appears to be one or two "heroic" retrofit projects that have large drainage areas, are cost-effectiveness, and achieve disproportionately high load reductions. The influence of these heroic projects can be quite pronounced, as illustrated in **Table 9**. Compared to the load reductions achieved by ALL of the candidate retrofit projects for a given jurisdiction, the one or two heroic projects are generally responsible for half or more of the reductions, and this value can exceed 75% (in the case of Bridgewater). These projects are clearly the heavy-hitters, and of course are the top-ranked projects for each jurisdiction.

The conundrum for an MS4 is that these projects also tend to be the more expensive projects, with estimated price tags for construction being in the hundreds of thousands of dollars (compared in many cases to tens of thousands for lower ranked projects). However, viewed another way, the heroic projects are relative bargains, because they cost proportionately less per pound of pollutant reduced. With this in mind, an MS4 may want to prioritize the heroic projects, but also realize that implementation, including raising the necessary capital, may take several years to accomplish. Also, it will be critical to scrutinize these projects thoroughly, as there may be reasons to not elevate them so highly. Feasibility, Page | 24

construction issues, property rights, and political support must all be analyzed in a feasibility or concept design stage to truly analyze whether the projects can deliver what is promised.

Table 8. Cost-Effectiveness of New Retrofits vs. Conversions/Enhancements \$/Poundof TP Removed							
	Bridgewater	Harrisonburg	JMU				
New Retrofits							
Number in Sample	9	31	24				
Range of Values	\$24,100 \$120,046	\$13,552 \$210,949	\$22,227 \$105,657				
Average	\$51,511	\$60,757	\$56,568				
Conversions/Enhancements							
Number in Sample	1	4	4				
Range of Values	\$7,723	\$4,234 \$94,553	\$9,797 \$14,164				
Average	\$7,723	\$51,167	\$12,052				

Table 9. Percent of Load Reductions & Costs for "Heroic" Projects Compared to ALLRetrofits From This Study For Each Jurisdiction

	ТР	TN	TSS	Construction Cost (\$)
Bridgewater – Project B2-A, Oakdale Park	77%	78%	73%	40%
Harrisonburg – Projects H200-Alt (Heritage Oaks G.C. RSC) & H42 (Market St. Median)	54%	62%	36%	42%
JMU – Project J35, Arboretum Stream Restoration	50%	25%	57%	23%

SECTION 5. RECOMMENDATIONS

5.1 Further Considerations

For Harrisonburg, implementation of the retrofits identified in this study must be done strategically and with full vetting of other available BMPs and strategies to achieve target pollutant load reductions. As Harrisonburg embarks on its first MS4 Permit Cycle with the TMDL Action Plan and load reduction requirements, it will be important to keep the following topics in mind.

Expanding the Search for Retrofit Options

This study only addressed retrofits on selected public land parcels within the City. Obviously, the acreage covered is only a small percentage of land within the jurisdiction. Accordingly, and as is evidenced by the data presented in this section, public land retrofits will be only part of the overall pollutant load reduction puzzle for Harrisonburg. In future years, an expanded retrofit assessment could also cover rights-of-way, private parcels with significant impervious cover, private basins and ponds, and other promising scenarios.

Investigating the Full Range of Practices

Stormwater retrofits are only one of the BMP strategies available to MS4s to achieve pollutant load reductions. As of this report, the Chesapeake Bay Program Expert Panels have approved procedures and performance values for implementing new state performance standards, retrofits, stream restoration, and urban nutrient management (see: http://chesapeakestormwater.net/bay-stormwater/baywide-stormwater-policy/urban-stormwater-workgroup/). Several other Expert Panels are in progress or pending: illicit discharge detection and elimination (IDDE), street sweeping, enhanced erosion control, and floating wetlands. As these protocols become accepted by the Bay Program, it will be helpful for MS4s to analyze which practices will be most suitable and cost-effective for their jurisdiction.

Stormwater Design Considerations for Karst

Harrisonburg and other Shenandoah Valley jurisdictions must address stormwater design issues associated with karst. Karst tends to be a very site-specific feature, and it is difficult to establish at the concept stage how it may affect a particular stormwater practice with regard to design details and associated costs. It is important to note that the pollutant removal performance values and costs presented in this report are based on Bay-wide data and procedures (and sometimes national data with regard to unit costs). As such, the performance values and unit costs do not anticipate the use of impermeable liners, more involved geotechnical work at the design stage, or other karst-specific issues. CWP does believe that karst is an important design consideration, but should not result in across-theboard or automatic BMP design modifications that increase cost.

The most recent Bay-wide guidance on stormwater design in karst is Technical Bulletin #1 from the Chesapeake Stormwater Network, and can be found here (CSN, 2009):

Page | 26

http://chesapeakestormwater.net/2012/03/technical-bulletin-no-1-stormwater-designguidelines-for-karst-terrain/. It should also be noted that the Virginia BMP Specifications on the Clearinghouse website (http://vwrrc.vt.edu/swc/NonProprietaryBMPs.html) contain short sections about design adaptations for karst.

Keeping in Touch With DEQ About MS4 Reporting

This study used the Bay Program-approved protocols, with some technical interpretations by CWP staff, to assign pollutant removal performance values to candidate retrofit (and some stream restoration) projects. A major caveat is that Virginia DEQ must still weigh in on how MS4s should report BMPs and their corresponding performance values. As of the writing of this report, DEQ has convened an MS4 Stakeholder Group to address issues with the TMDL Action Plan. Harrisonburg staff may need to revisit the numbers presented in this section after DEQ issues its guidance.

5.2 Options for Achieving Required Load Reductions

The remainder of this section consists of several tables that present and analyze retrofit data for Harrisonburg. The tables are as follows:

- **Table 10** presents assumed load reduction requirements for Harrisonburg for Total Phosphorus (TP), Total Nitrogen (TN), and Total Suspended Solids (TSS). The numbers are relevant to the "TMDL Action Plan" required in the Virginia Small MS4 General Permit and Virginia's Phase II Watershed Implementation Plan (WIP). For Harrisonburg, these numbers likely overestimate the load reductions actually required since they reflect total acreage for "regulated urban impervious" and "regulated urban pervious" land cover within the whole City. The numbers can be refined once Harrisonburg delineates actual land area within the MS4 boundaries.
- **Table 11** shows how potential load reductions from the candidate retrofit projects in this study compare to those needed in the MS4 Permit and WIP. The table breaks out total loads from all of the candidate retrofit projects, as well as the 10 top-ranked projects (see **Table 7**). The table also shows the percentage of the reduction achieved through retrofits for the 1st (current) permit cycle, as well as the 2nd cycle and the total required reductions through 3 cycles.

It should be noted that the current general permit only contains requirements to achieve 5% of the reductions, but also states that future permit cycles will be in accordance with the WIP.

As such, the projections for future permits are based on the percent reductions noted in the WIP. As can be seen from this table, retrofits on public land in Harrisonburg will be only part of the overall MS4 pollution reduction strategy. Implementing the top ten projects within 5 years would achieve 28% (for TSS), 48% (for TP), and 97% (for TN) of the reductions required in the 1st permit term.

• **Table 12** outlines several possible TMDL Action Plan scenarios for Harrisonburg based on the retrofit data. These scenarios assume different retrofit implementation levels and timelines, and assume that retrofits will be implemented along with other

MS4 strategies. A couple of the scenarios involve cooperating with JMU on selected projects or even entering into a joint permit with JMU. Some of the scenarios also envision limited purchase of nutrient credits through the Chesapeake Bay Nutrient Credit Exchange, although this program is still being fleshed out at the state level. It should be noted that these scenarios are hypothetical, and of course the actual strategy must be vetted through a local process. However, the proposed scenarios may help the City with understanding its choices as it continues to implement the MS4 program.

• Since one of the scenarios in **Table 12** involves a joint permit with JMU, **Table 13** and **Table 14** show data on what the required load reductions would presumably be under such a permit and how well different retrofit implementation strategies would achieve the target reductions.

Table 10. Harrisonburg MS4 Required Load Reductions					
	Required Load Reductions ¹				
	TP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)		
1st Permit Cycle (ending 2018) – Achieve 5% of total	75	550	64,733		
reduction ²					
2nd Permit Cycle (ending 2023) – Achieve additional 35% of	524	3,851	453,133		
total reduction					
Total Reduction Required	1,498	11,003	1,294,667		
(in up to three permit cycles)					
1 Load reductions derived from DCP spreadsheet that is based on P	phase 532 Wate	rshad Modal Th	a raductions		

¹ Load reductions derived from DCR spreadsheet that is based on Phase 5.3.2 Watershed Model. The reductions are a % reduction from Edge-of-Stream baseline loads from July 1, 2009. Loads are calculated based on the acreage of "regulated urban impervious" and "regulated urban pervious" acres within the MS4, with specific loading rates for Potomac and Shenandoah River Basin, as documented in Phase 5.3.2 of the Chesapeake Bay Model. All load figures were rounded to the nearest whole number.

² The Virginia Small MS4 General Permit became effective on July 1, 2013. Section 1(C) – Special Conditions for the Chesapeake Bay TMDL – stipulates that MS4s achieve 5% of their required reductions in the 1st 5-year permit cycle, and also states that future permit cycle reductions will be in accordance with Virginia's Phase 1 and 2 Watershed Implementation Plans. The permit also requires MS4s to offset increased loads from some new development projects (initiated after July 1, 2009) as well as grandfathered projects (initiated after July 1, 2014). This table shows only numbers for reductions from existing sources. Reductions in the other two categories are expected to be low compared to values for existing sources.

Table 11. Harrisonburg: Implementation of Retrofits Compared to Required Load Reductions

TP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)	Construction Cost
53	694	33,675	\$2,312,618
% of Permi	it Cycle's Require	ed Reduction	
71%	126%	52%	
9%	16%	7%	
4%	6%	3%]
36	532	18,415	\$1,249,896
% of Permi	it Cycle's Require	ed Reduction	
48%	97%	28%	
6%	12%	4%	
2%	5%	1%]
	TP (lbs/yr) 53 % of Permit 71% 9% 4% 36 % of Permit 48% 6% 2%	TP TN (lbs/yr) (lbs/yr) 53 694 % of Permit Cycle's Required 71% 126% 9% 16% 4% 6% 36 532 % of Permit Cycle's Required 48% 97% 6% 12% 2% 5%	TP TN TSS (lbs/yr) (lbs/yr) (lbs/yr) 53 694 33,675 % of Permit Cycle's Require Reduction 52% 71% 126% 52% 9% 16% 7% 4% 6% 3% 532 18,415 % of Permit Cycle's Require Reduction 28% 6% 12% 4% 6% 12% 4% 2% 5% 1%

¹ The total load reductions and costs for implementing All Retrofits assumed that: (1) for H28, option 3 is used and Options 1 and 2 are excluded from the summing of load reductions and costs, and (2) for H200, the Alternative regenerative stormwater conveyance project is used, and the smaller parking lot bioretention project is excluded (see **Appendix B**). The reason for this is that these projects are nested, and it is likely that only one of the options for each site would be implemented.

² "Inclusive" means the % reduction achieved compared to required reductions for the 1st plus 2nd permit cycles, based on the WIPs. This amounts to a total reduction of 40% (5% for the 1st permit cycle + an additional 35% for the 2nd).

Table 12. Overview of Possible MS4 Load Reduction Scenarios for Harrisonburg					
Permit Cycle Activities & A	Actions	Notes			
Scenario 1: Partner With JMI	J on Arboretum Project ¹ + 1	etrofit	s + Trading		
 Scenario 1: Partner With JMU 1st Permit Cycle (2018): The drainage area for the J within the City, and the pro- reductions and is cost-effice willing partners, Harrisonin negotiate the % of reductions In addition, Harrisonburg a several of their smaller hige (e.g., H4, H11, H22-A, H47) Begin design work for some constructed during the 2nd Take a hard look at other F cost-effective than retrofite reductions: stream restored management, street sweep instance, the City could con- inventory that identifies an projects. Purchase certified nutrient deficits for the 1st cycle, if a 	J on Arboretum Project ¹ + 1 MU Arboretum Project is oject yields high pollutant cient. If both MS4s were ourg could cost-share and on received. may want to implement ch-ranking retrofit projects he larger retrofits to be cycle (e.g., H42, H200-Alt) BMPs that may be more s for the needed pollutant tion, urban nutrient bing, IDDE, etc. For nduct a stream restoration nd prioritizes candidate t credits to make up any any.	etrofit: The The TSS base of the red ma TSS red ma TSS red nut the term of te	e JMU Arboretum Project generates surplus S reductions through the 2 nd permit cycle, sed on the projections in this study. On the ter hand, JMU may fall short for TN luction. A partnership with Harrisonburg y allow JMU to use its advantage to reduce S and Harrisonburg to use its advantage to luce TN through BMPs such as urban crient management or street sweeping. trient trading regulations are still in tocess at DEQ, so the rules of the game and tt are still uncertain. However, the MS4 heral Permit does authorize the use of ding.		
 <u>2nd Permit Cycle (2023):</u> Expand the retrofit inventorights-of-way, highly-imperespecially existing stormw Construct one or more of tretrofits, as noted above. Continue to implement oth <u>Out-Year Permits:</u> Re-evaluate other potential retrofits program & Virginia credited pruban nutrient management, spick most cost-effective mix of the program for th	ory to include public rvious private land, and ater basins and ponds. he larger high-ranking her urban BMPs. rrofits along with other Bay ractices: street sweeping, tream restoration, etc. to practices.				
¹ The "Arboretum Project" refer	s to a candidate retrofit proje	t identif	ied at JMU as part of this study. The project		
U35J Involves removing an exist Arboratum Pond	ung pona ana restoring the re	icn of st	ream between Neff Avenue and the main		
Scenario 2: Retrofit "Campus	es" + Other BMPs + Tradin	ī			
1 st Permit Cycle (2018)		• Ac	noted the retrofit campus idea has merit to		
 Harrisonburg could "cluster so that they could better set sites. Potential sites includ Sampson Park (H10 sites, J sites), Waterman Elementa and/or Keister Elementary would be to use retrofits st other BMPs (e.g., stream re share of load reductions. 	er" retrofits at certain sites erve as demonstration de Lucy Simms/Ralph H11), Westover Park (H22 ary School (H8 sites), 7 (H29 sites). The strategy trategically, but rely on estoration) for a larger	 cor edu it v nee pro tog for Str rea 	incentrate retrofit efforts and serve incentrate retrofit efforts and serve incational and outreach functions. However, would not lead to high percentages of eded reductions. For instance, the 4 ojects as Lucy Simms/Ralph Sampson Park ether would yield 5% of needed reductions TP and TSS and 9% for TN for the 1 st cycle. eam restoration is suggested for several sons: (1) retrofit-derived TSS reductions im to lag slightly behind TP/TN for		
 conduct an inventory of av projects; rank and prioritiz study. 	ze similar to the retrofit	see Ha: Arl	rrisonburg, (2) as evidenced by the JMU poretum project, stream restoration can		

 Conduct an inventory of available retrofits of existing (private) basins and ponds, rights-of-way, some private land. Also, based on emerging guidance, quantify the cost-effectiveness of urban nutrient management, street sweeping, and other Bay Program and VA credited practices. Purchase certified nutrient credits to make up any deficits for the 1st cycle. 	generate high levels of TSS reduction based on the interim rate, and (3) TSS is not available for trading as are TP/TN.
 <u>2nd Permit Cycle (2023):</u> Construct strategic stream restoration projects. Construct some of the larger high-ranking retrofits. Implement other BMPs. Possibly trading as needed. <u>Out-Year Permits:</u> See Scenario 1.	
Scenario 3: Joint Permit With JMU (see Table 13)	
 1st Permit Cycle (2018): Negotiate joint permit with JMU and DEQ. Implement Arboretum Project and the best highranking retrofits from JMU & Harrisonburg. Jointly conduct an inventory of possible stream restoration projects and other available BMPs. 2nd Permit Cycle (2023): Implement the most cost-effective stream restoration, retrofit, or other BMP projects. 	• Overall, the most cost-effective retrofits are at JMU – between the Arboretum and several basin conversions (J26, J28, J33). The average cost per pound of TP for the 3 JMU basin conversions is \$12,022/lb, while the average for the top 10 Harrisonburg retrofits is nearly \$37,000/lb. Therefore, it is likely that the basin conversions would be the first projects to be implemented through a joint permit.
<u>Out-Year Permits:</u> Same as Scenarios 1 and 2.	

Table 13. City of Harrisonburg + JMU Combined MS4 Required Load Reductions					
	Required Load Reductions ¹				
	TP (lbs/yr)	TN (lbs/yr)	TSS (lbs/yr)		
1st Permit Cycle (ending 2018) – Achieve 5% of total					
reduction ²	78	578	67,568		
2nd Permit Cycle (ending 2023) – Achieve additional 35% of					
total reduction	548	4,050	472,981		
Total Reduction Required					
(in up to three permit cycles)	1.566	11.572	1.351.376		

¹Load reductions derived from DCR spreadsheet that is based on Phase 5.3.2 Watershed Model. The reductions are a % reduction from Edge-of-Stream baseline loads from July 1, 2009. Loads are calculated based on the acreage of "regulated urban impervious" and "regulated urban pervious" acres within the MS4, with specific loading rates for Potomac and Shenandoah River Basin, as documented in Phase 5.3.2 of the Chesapeake Bay Model. All load figures were rounded to the nearest whole number.

² The Virginia Small MS4 General Permit became effective on July 1, 2013. Section 1(C) – Special Conditions for the Chesapeake Bay TMDL – stipulates that MS4s achieve 5% of their required reductions in the 1st 5-year permit cycle, and also states that future permit cycle reductions will be in accordance with Virginia's Phase 1 and 2 Watershed Implementation Plans. The permit also requires MS4s to offset increased loads from some new development projects (initiated after July 1, 2009) as well as grandfathered projects (initiated after July 1, 2014). This table shows only numbers for reductions from existing sources. Reductions in the other two categories are expected to be low compared to values for existing sources.

Table 14. City of Harrisonburg + JMU: Implementation of Retrofits Compared to Combined Required Load Reductions

combined Required Loud Reduction		TN	TCC	Complete and the second s
			155	Construction
	(lbs/yr)	(lbs/yr)	(lbs/yr)	Cost
Implement All Retrofits	148	1251	101,191	\$4,175,545
	% of Permit C	Cycle's Required	Reduction	
All Retrofits % 1st Permit Cycle	189%	216%	150%	
All Retrofits % 2nd Permit Cycle (inclusive) ¹	24%	27%	19%	
All Retrofits % Total Reduction	9%	11%	7%	
Implement Only Combined 15 Top- Ranked Retrofits	111	905	69,505	\$2,226,649
	% of Permit C	Cycle's Required	Reduction	
Top-Ranked % 1st Permit Cycle	142%	156%	103%	
Top-Ranked % 2nd Permit Cycle (inclusive)	18%	20%	13%	
Top-Ranked % Total Reduction	7%	8%	5%	
Implement Arboretum Project Only	48	140	38,500	\$420,000
	% of Permit C	Cycle's Required	Reduction	
Arboretum % 1 st Permit Cycle	61%	24%	57%	
Arboretum % 2 nd Permit Cycle (inclusive)	8%	3%	7%]
Arboretum % Total Reduction	3%	1%	3%	

¹ "Inclusive" means the % reduction achieved compared to required reductions for the 1st plus 2nd permit cycles, based on the WIPs. This amounts to a total reduction of 40% (5% for the 1st permit cycle + an additional 35% for the 2nd).

REFERENCES

Anne Arundel County, Maryland. 2012. *Regenerative Step Pool Storm Conveyance (SPSC), Design Guidelines.* Revision 5: December 2012.

Center for Watershed Protection (CWP). 2007. *Urban Stormwater Retrofit Practices Version 1.0. Manual 3 in the Urban Subwatershed Restoration Manual Series*. CWP. Ellicott City, MD.

Center for Watershed Protection (CWP). 2011. *In-Lieu Fee Proposal for On-Site Stormwater Management*. Unpublished draft. Prepared for the Delaware Department of Natural Resources and Environmental Control Division of Soil and Water conservation. CWP. Ellicott City, MD.

Chesapeake Stormwater Network (CSN). 2009. *Technical Bulletin No. 1: Stormwater Design Guidelines for Karst Terrain in the Chesapeake Bay Watershed.* Version 2.0. Developed by Karst Working Group. CSN. Ellicott City, MD.

James River Association (JRA). 2013. *Cost-Effectiveness Study of Urban Stormwater BMPs in the James River Basin.* JRA. Richmond, VA.

King, D., and P. Hagan. 2011. *Costs of Stormwater Management Practices in Maryland Counties*. Prepared for Maryland Department of the Environment by the University of Maryland Center for Environmental Services. Technical Report Series No. TS-626-11 of the University of Maryland Center for Environmental Science.

Novotney, M. and R. Winer. 2008. *Municipal Pollution Prevention/Good Housekeeping Practices Manual - Version 1.0.* Manual 9 in the *Urban Subwatershed Restoration Manual Series.* Center for Watershed Protection. Ellicott City, MD.

Schueler, T. and C. Lane. 2012. *Recommendations of the Expert Panel to Define Removal Rates for Urban Stormwater Retrofit Projects.* Chesapeake Stormwater Network. Ellicott City, MD.

Schueler, T. and B. Stack. 2013. *Final Recommendations of the Expert Panel to Define Removal Rates for Individual Stream Restoration Projects*. Chesapeake Stormwater Network and Center for Watershed Protection. Ellicott City, MD.

Water Environment Research Foundation (WERF). 2009. *BMP and LID Whole Life Cost Models: Version 2.0.* Alexandria, VA. Available at: http://www.werf.org/i/a/Ka/Search/ResearchProfile.aspx?ReportId=SW2R08

West Virginia Department of Environmental Protection (WVDEP). 2012. *Guidance for Developing an Off-Site Stormwater Compliance Program in West Virginia.*

Wright, T., C. Swann, K. Cappiella, T. Schueler. 2005. *Unified Subwatershed and Site Reconnaissance: A User's Manual-Version 2.0.* Manual 11 in the *Urban Subwatershed Restoration Manual Series*. Center for Watershed Protection. Ellicott City, MD.

APPENDIX A: FIELD FORMS

This appendix includes the field forms used during the stormwater retrofit study:

- Retrofit Reconnaissance Inventory form
- Hotspot Site Investigation form
- Severe Bank Erosion form
- Stormwater Outfall form
- Impacted Buffer form

Retrofit Reconnaissance Investigation Updated: 3/1/2011

WATERSHED: SUBWATERSH		SUBWATERSHED:	D: UNIQUI		e Site ID:	
DATE:	ASSESS	ED BY:	CAMERA ID:		PICTURES:	
GPS ID:	LMK I	D:	LAT:		LONG:	
SITE DESCRIPTION						
Name:Address:						
Ownership: If Public, Government Jurisdicti	on:	Public Private	e 🗌 Unknown	Other:		
Corresponding USSR/USA Field	d Sheet?	Yes	No If yes,	Unique Sit	e ID:	
Proposed Retrofit Location: Storage Existing Pond Above Below Outfall In Con In Road ROW Near I Other:	y Culvert System king Lot	On-Site Hotspot Operation Individual Rooftop Small Parking Lot Small Impervious Area Individual Street Landscape / Hardscape Underground Other:				
DRAINAGE AREA TO PROPO	SED RET	ROFIT				
Drainage Area ≈ Imperviousness ≈ Impervious Area ≈ Notes:	%	5	Drainage Area L Use: Residential SFH (< 1 SFH (> 1	and ac lots) ac lots)	 Institutional Industrial Transport-Related Park 	
			Townhous	ses nily	Undeveloped Other:	
EXISTING STORMWATER M	ANAGEM	IENT				
Existing Stormwater Practice: If Yes, Describe:	Γ]Yes []No	Possible			
Describe Existing Site Conditi Existing Street Width (if appli	ons, Inclu cable): <u></u>	ıding Existing Site D	rainage and Conve	yance:		
Existing Head Available:		Note where catch basin	e points are measur 1 invert, manhole ri	red from: im to cate	(i.e. street elevation to h basin invert, other)	

Retrofit Reconnaissance Investigation Updated: 3/1/2011

PROPOSED RETROFIT	
Purpose of Retrofit: Water Quality Recharge Demonstration / Education Repair	Channel Protection Flood Control
Retrofit Volume Computations - Target Storage:	Retrofit Volume Computations - Available Storage:
Proposed Treatment Option: Extended Detention Wet Pond Filtering Practice Infiltration	ed Wetland Dioretention
Describe Elements of Proposed Retrofit, Including	Surface Area, Maximum Depth of Treatment, and Conveyance:
Available Width:	
SITE CONSTRAINTS	
Adjacent Land Use: Institution Residential Commercial Institution Industrial Transport-Related Park Undeveloped Other:	al Access: Image: No No Constraints Constrained due to Slope Image: Slope Space Image: Utilities Tree Impacts Image: Structures Property Ownership Other:
Conflicts with Existing Utilities:	Potential Permitting Factors:
YesPossible/ ModifiableNoUnknownSewer:Water:Gas:Electric toStreetlights:Other:	Dam Safety Permits Necessary Probable Not Probable Impacts to Wetlands Probable Not Probable Impacts to a Stream Probable Not Probable Floodplain Fill Probable Not Probable Impacts to Forests Probable Not Probable Impacts to Specimen Trees Probable Not Probable How many?
Soils:Soil auger test holes:Evidence of poor infiltration (clays, fines):Evidence of shallow bedrock:Evidence of high water table (gleying, saturation):	☐ Yes ☐ No ☐ Yes ☐ No ☐ Yes ☐ No ☐ Yes ☐ No ☐ Yes ☐ No

SKETCH

FOLLOW-UP NEEDED TO COMPLETE FIELD CON	CEPT Obtain existing stormwater practice as-builts
Confirm drainage area impervious cover Confirm volume computations	 Obtain site as-ounts Obtain detailed topography Obtain utility mapping
Complete concept sketch Other:	Confirm storm drain invert elevations
INITIAL FEASIBILITY AND CONSTRUCTION CONS	IDERATIONS
SITE CANDIDATE FOR FURTHER INVESTIGATION IS SITE CANDIDATE FOR EARLY ACTION PROJECT IF NO, SITE CANDIDATE FOR OTHER RESTORATION	:

DESIGN OR DELIVERY NOTES

Hotspot Site Investigation

HSI

WATERSHED:	SUBWATERSHED:		UNIQUE SITE	ID:							
DATE://	ASSESSED BY: CAMERA ID: PIC#:										
MAP GRID: LAT''' LONG''' LMK #											
A. SITE DATA AND BASIC CLASSIFICATION											
Name and Address:											
SIC code (if available): Basic Description of Operation: NPDES Status: Regulated											
Unregulated Unknown											
B. VEHICLE OPERATIONS N/A (Skip to	part C)		Observed I	Pollution Sourc	e?						
B1. Types of vehicles: Fleet vehiclesB2. Approximate number of vehicles:	School buses	Other:									
B3. Vehicle activities (<i>circle all that apply</i>):	Maintained Rep	aired Recycled Fueled	Washed Store	d	0						
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion r	ide? Y N nethods? Y	☐ Can't Tell] N ☐ Can't Tell			0						
B5. Is there evidence of spills/leakage from	vehicles? Y	N Can't Tell			0						
B6. Are uncovered outdoor fueling areas pre-	sent? Y N	Can't Tell			0						
B7. Are fueling areas directly connected to s	torm drains?	🗌 N 🔲 Can't Tell			0						
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed dis	N Can't Te charge to the storm	ll drain? 🗌 Y 🗌 N 🔲 Ca	an't Tell		0						
C. OUTDOOR MATERIALS N/A (Skip to	part D)		Observed I	Pollution Sourc	e?						
C1. Are loading/unloading operations present of the set of the s	nt? 🗌 Y 🗌 N [rds a storm drain in]	\Box Can't Tell et? \Box Y \Box N \Box C	an't Tell		0						
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell I concrete/asphalt	f yes, are they Liquid	Solid Description	n:	0						
C3. Is the storage area directly or indirectly	connected to storm d	lrain (circle one)?] N 🗌 Can't Te	11	0						
C4. Is staining or discoloration around the a	rea visible? 🗌 Y	N Can't Tell			0						
C5. Does outdoor storage area lack a cover?	Y N	Can't Tell			0						
C6. Are liquid materials stored <i>without</i> seco	ndary containment?	\square Y \square N \square Can't T	ell		0						
C7. Are storage containers missing labels or	in poor condition (r	usting)? 🗌 Y 🗌 N 🔲 🤇	Can't Tell		0						
D. WASTE MANAGEMENT N/A (Skip to	p part E)		Observed I	Pollution Sourc	e?						
D1. Type of waste (<i>check all that apply</i>):	Garbage Con	struction materials 🗌 Haz	ardous materials	any of these	0						
D2. Dumpster condition (<i>check all that app</i> evidence of leakage (stains on ground)	ly): No cover/Lid Overflowing	l is open Damaged/poor	condition	eaking or any of these	0						
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (ber	in inlet? 🔲 Y 🗍 N ms, curbs) lacking?	$\begin{array}{c c} \Box & Can't Tell \\ \hline & Y & \Box & N \\ \hline & Can't Tell \\ \hline \end{array}$	ell if	both are yes	0						
E. PHYSICAL PLANT N/A (Skip to part)	F)		Observed I	Pollution Sourc	e?						
E1. Building: Approximate age: Evidence that maintenance results in discha	yrs. Condition of rge to storm drains (surfaces: Clean Staining/discoloration)?	ained Dirty Y N Don't] Damaged know	0						

*Index: O denotes potential pollution source; denotes confirmed polluter (evidence was seen)

Hotspot Site Investigation

HSI

E2. Parking Lot: Approximate age yrs. Condition: Clean Stained Dirty Breaking up Surface material Paved/Concrete Gravel Permeable Don't know	0
E3. Do downspouts discharge to impervious surface? Y N Don't know None visible Are downspouts directly connected to storm drains? Y N Don't know	0
E4. Evidence of poor cleaning practices for construction activities (stains leading to storm drain)? Y N Can't Tell	0
E5. Evidence of poor cleaning practices for washing activities (observed washwater dumping, stains leading to storm drain)? $\Box Y \Box N \Box Can't Tell$	0
F. TURF/LANDSCAPING AREAS N/A (<i>skip to part G</i>) Observed Pollution Source	2
F1. % of site with: Forest canopy% Turf grass% Landscaping% Bare Soil 20 %	0
F2. Rate the turf management status: High Medium Low 40% medium to high	0
F3. Evidence of permanent irrigation or "non-target" irrigation \Box Y \Box N \Box Can't Tell	0
F4. Do landscaped areas drain to the storm drain system? Y N Can't Tell	0
F5. Do landscape plants accumulate organic matter (leaves, grass clippings) on adjacent impervious surface? 🗌 Y 🗌 N 🗋 Can't Tell	0
G. STORM WATER INFRASTRUCTURE N/A (<i>skip to part H</i>) Observed Pollution Source	?
G1. Are storm water treatment practices present? Y N Unknown If yes, please describe:	0
G2. Are private storm drains located at the facility? Y N Unknown > 25 % Is trash, sediment and/or organic material present in gutters leading to storm drains? (circle appropriate) > 25 %	0
H. INITIAL HOTSPOT STATUS - INDEX RESULTS	
Not a hotspot (fewer than 5 circles and no boxes checked) Potential hotspot (5 to 10 circles but no boxes checked)	
Confirmed hotspot (10 to 15 circles and/or 1 box checked) Severe hotspot (>15 circles and/or 2 or more boxes checked)	
Immediate (1 week) Cover fueling islands (covered area:sf) Immediate (1 week) Cover fueling islands (covered area:sf) Immediate (1 week) Cover fueling islands (covered area:sf) Immediate (1 week) Install dry spill response kits (#:) Immediate (1 week) Install dry spill response kits (#:) Immediate (1 week) Install dry spill response kits (#:) Immediate (1 week) Install dry spill response kits (#:) Immediate (1 week) Install dry spill response kits (#:) Immediate (1 week) Install dry spill response kits (#:) Immediate (1 week) Immediate (1 week) Immediate (1 week) Imme	sf)

Severe Bank Erosion

WATERSHED/SUBS	SHED:			DATE: /	/	Asses	SED BY:			
SURVEY REACH:		TIME::	AM/PM	PHOTO ID (CAMI	ERA-PIC#):	/#			
SITE ID: (Condition-	#) START LAT	<u> </u>	" LONG°	'']	LMK		GPS: (Unit ID)			
ER	END LAT	<u> </u>	'LONG <u>°</u>	·'''	LMK	_				
PROCESS:	Currently unknown Bed scour Bank failure Bank scour Slope failure Channelized	BANK OF CO LOCATION: [DIMENSIONS Length (if no C Bank Ht Bank Angle	NCERN: LT LT Meander bend	RT Both (<i>lo</i> Straight section and/or RT and/or RT and/or RT	oking dow. ☐ Steep si ft ft ft e	nstream) lope/vall Botto Top v Wette	ey wall Other: m widthft vidthft d Widthft			
DED CENT OF D										
PERCENT OF BA □ <10%	ANK VEGETATED: 25%	BANK	% sand I Mi % clay I Otl	: x sand, gravel, cobble ner:	D e [_ [ESCRIF] Loose] Mixed] Appear	/unstable (some rocks/veg., loose) rs stable (rocks/veg.)			
POTENTIAL RESTO	ORATION CANDIDAT	E: Grade	control [Bank stabilization						
THREAT TO PROP	erty/Infrastruct	URE: 🗌 No	Yes (Descrit	be):						
EXISTING RIPARIA	AN WIDTH:	□ <u><</u> 25 ft	25 - 50 ft	50-75ft75-	100ft [>1001	ft			
EROSION SEVERITY(circle#) Channelized= 1	Active downcutting; tall bar of the stream eroding at a f contributing significant amo stream; obvious threat to p infrastructure.	ks on both sides ast rate; erosion ount of sediment to roperty or	Pat downcutting evide widening, banks activ moderate rate; no thr infrastructure	ent, active stream rely eroding at a eat to property or	Grade and failure/eros scour, impa	nd width stable; isolated areas of bank rosion; likely caused by a pipe outfall, local npaired riparian vegetation or adjacent use.				
	5 Good access: Open area	n nublic	4 3		2 Difficult ac	COSS MUS	1 st cross wetland, steep slope or			
ACCESS:	ownership, sufficient room materials, easy stream cha heavy equipment using exi trails.	to stockpile nnel access for sting roads or	Fair access: Foreste adjacent to stream. A removal or impact to Stockpile areas small	d or developed area ccess requires tree landscaped areas. or distant from stream.	other sensi stockpile and distance fro equipment	e areas available and/or located a great e from stream section. Specialized heavy ent required.				
	5	4	4 3	2	2		1			
NOTES/CROSS SEC	CTION SKETCH:				Reporte	ΤΟ ΑΠ	THORITIES TYES TNO			

Storm Water Outfalls

WATERSHED/SUBSHI	D:			DATE://	ASSESSED BY:								
SURVEY REACH ID:		TIN	ME:AM/PM	PHOTO ID: (Camera-Pic	#) /#								
SITE ID (Condition-#):	ОТ	LA	T <u>°''</u> 'I	ONG''	LMK GPS: (Unit ID)								
		•											
BANK: LT RT Head FLOW: Trickle	TYPE:		MATERIAL: Concrete Meta PVC/Plastic Brick Other:	SHAPE: Single Circular Double Elliptical Triple Other:	DIMENSIONS: SUBMERGED: Diameter: (in) Partially Fully								
Moderate Substantial Other:	Open channel		Concrete Earther	☐ Trapezoid De ☐ Parabolic Wi ☐ Other: "	pth: (in) dth (Top): (in) (Bottom): (in)								
CONDITION: None Chip/Cracked Peeling Paint	ODOR: Gas Sewage Rancid/S	NO our	DEPOSITS/STAINS: None Oily Flow Line 	VEGGIE DENSITY: None Normal Inhibited	PIPE BENTHIC GROWTH: None Brown Orange Green Other: POOL QUALITY: No pool								
Corrosion	Sulfide		☐ Paint ☐Other:	ExcessiveOther:	Good Odors Colors Oils Suds Algae Floatables Other:								
FOR COLO	R: 🗌	Clear	r 🗌 Brown 🗌 Grey	Yellow Green	Orange 🗌 Red 🗌 Other:								
FLOWING TURB	DITY:	None	e Slight Cloudiness										
ONLY FLOAT	TABLES:	None	e Sewage (toilet paper	(etc.) Petroleum (oil sheen) Other:								
OTHER \Box ExCONCERNS: \Box Ne	eds Regular Ma	er/pla	ance Bank E	rosion Other:	edimentation								
POTENTIAL RESTOR	ATION CANDI	DATE	Discharge investigat	ion 🗌 Stream daylighting	Local stream repair/outfall stabilization								
no			Storm water retrofit	Other:									
<i>If yes for daylighting.</i> Length of vegetative co	ver from outfal	1:	ft Type of ex	sting vegetation:	Slope:°								
If yes for stormwater. Is stormwater currently	controlled? t investigated		Land Use o Area availa	escription:									
OUTFALL H SEVERITY: SI (circle #) SI	eavy discharge with rong smell. The am ompared to the amo ream; discharge ap gnificant impact doo	n a disti ount of pears f vnstrea	inct color and/or a f discharge is significant normal flow in receiving to be having a am.	l discharge; flow mostly clear and od arge has a color and/or odor, the amo arge is very small compared to the st and any impact appears to be minor /	orless. If the bunt of ream's base localized. Outfall does not have dry weather discharge; staining; or appearance of causing any erosion problems.								
		5	4	3	2 1								
Sketch/Notes:				R	EPORTED TO AUTHORITIES: 🗌 YES 🗌 NO								

Impacted Buffer

WATERSHED/SUBSHED:						DATE:	1 /	Ass	ESSED BY:
SURVEY REACH:			TIME:	_:AM/	'PM	Рното І	D: (Camera-P	Pic #)	/#
SITE ID: (Condition-#)	Start	Lato	' <u>'</u> ' I	LONG	0	• ••	LMK		GPS: (Unit ID)
IB	END	LAT <u>°</u>	<u>'</u> " I	ONG	o	• •	LMK		
IMPACTED BANK: LT RT Both	REASON	INADEQUATE:	Lack of	vegetation	Too	o narrow [] Widespread ir	ivasive p	lants
LAND USE:	Private	Institutional	Golf Cou	rse Park	Ot	her Public			
(Facing downstream) LT Ban	ık 🗌]		□:			
RT Ban	ık 🗌]		: []			
DOMINANT	Pavec	Bare ground	d Turf/lav	vn Tall	grass	Shrub/scru	ub Trees	Other	
LAND COVER: LT Bai	nk 🗌								
RT Bai		<u> </u>	L	J l					
INVASIVE PLANTS:	∐ Nor	e Rare	∐ P	artial covera	nge	Exter	nsive coverage	📙 unk	nown
STREAM SHADE PROVID	DED?	Ione Part	tial 🗌	Full	WETL	ands Pre	SENT? 🗌 No	□ Y	es 🗌 Unknown
DOTENTIAL DESTODATE			ua nafanastati		arriari d	asian 🗖	Notural record	tion 🗖	Investues removal
	UN CANDI		ve reforestati		liway u		Natural regenera		nivasives removai
KESTOKABLE AREA		DEFODEST	ATION	Impacted are where the rig	a on put arian are	blic land leadoes l	Impacted area on eit public or private land	her that is	Impacted area on private land where road: building
LT BANK	к RT	POTENTIA (<i>Circle #</i>)	L:	not appear to specific purp area availabl) be used ose; pler e for pla	d for any provident of the second sec	presently used for a purpose; available an purpose; available an planting adequate	specific ea for	encroachment or other feature significantly limits available area for planting
Width (ft):				5		4	3	2	2 1
POTENTIAL CONFLICTS Poor/unsafe access to site	WITH REF te Exis	ORESTATION ting impervious c	wi vover 🗌 Sev	despread invere animal	vasive j impact	plants [s (deer, bea	Potential conta	mination	Lack of sun
NOTES:					_				

APPENDIX B: HARRISONBURG RETROFIT CONCEPTS RANKING TABLE

			(e)						((r)									
Site ID	Site Description	Proposed Practice	Drainage Area (acı	Impervious Cover (acre)	Target WQv (cf)	Available Practice Width (ft)	Available Practice Length (ft)	% Water Quality Volume ¹	TP Removal (lb/yr	TN Removal (lb/yr	TSS Removal (lb/y	Cost \$	Cost Effectiveness (\$/lb TP removed)	Cost Effectiveness	Phosphorus Removal	Maintenance Burden	Potential Utility or Site Constraints	Aesthetics / Safety	Total Score	Rank
H42	Median on Route 33 Market Street	Regenerative Stormwater Conveyance	88.50	57.4	222,780.36	20	1,000	11	17.55	179.9	13,751	\$1,076,220	\$61,309	14	35	15	10	2.5	76	1
H11	Ralph Sampson Park	Enhancement	0.64	0.54	1,942.05	3	72	11	0.18	2.02	436.47	\$775	\$4,234	35	7	7.5	10	2.5	62	2
H47	Linda Lane Extended	Enhancement	10.25	3.67	17,910.78	11 3	113	99	0.86	12.81	1,483.18	\$63,503	\$73,472	2	35	7.5	10	5	60	3
H10-D	Ralph Sampson Park @ b'ball courts	Bioretention	4.09	0.45	4,458.73	25	45	33	1.50	25.57	439.10	\$35,701	\$23,776	35	3	7.5	5	5	55	4
H29-A	Keister Elementary School	Bioretention	0.60	0.53	1,883.61	10	70	38	0.38	3.58	330.73	\$17,330	\$45,174	18	1	15	10	5	49	5
H-10A	Lucy Simms Basin	Enhancement	20.16	5.73	31,283.70	-	-	19	0.76	12.10	1,157.85	\$21,540	\$28,344	5	31	7.5	5	0	49	6
H22-A	Westover Park Entrance	Bioretention	3.00	0.44	3,561.76	20	75	56	1.30	20.88	467.39	\$48,478	\$37,392	22	3	7.5	10	5	47	7
H4	Harrisonburg Electric Commission operations	Bioretention	2.60	1.74	6,687.19	30	30	21	0.94	9.63	743.34	\$34,259	\$36,493	23	2	7.5	10	5	47	8
Н10-С	Lucy Simms Building	Rain Tank	1.39	1.29	4,528.43	-	-	100	1.48	13.47	1,289.48	\$67,920	\$46,035	18	3	15	5	2.5	44	9
H37	Harrisonburg Public works yard	Wet Swale	1.02	0.88	3,146.48	25	100	98	0.81	5.62	820.08	\$38,089	\$47,254	18	2	7.5	10	5	42	10
H27	Harrisonburg High School	Bioretention	2.12	2.12	7,310.82	25	100	57	1.88	16.79	1,677.07	\$102,671	\$54,546	15	4	7.5	10	5	42	11
H29-B	Keister Elementary School	Bioretention	0.17	0.17	586.25	15	35	102	0.19	1.70	169.81	\$14,563	\$76,421	11	0	15	10	5	41	12
H31	Purcell Park	Bioretention	1.94	1.35	5,126.65	25	50	27	0.86	8.75	692.66	\$33,573	\$38,880	21	2	7.5	5	5	41	13
H201	Fire Station #3	Bioretention	0.45	0.28	1,101.34	9	34	25	0.18	1.89	138.24	\$6,620	\$36,980	23	0	7.5	5	5	40	14
H38-A	Harrisonburg Water & Sewer dept	Bioretention	0.75	0.68	2,400.88	30	30	58	0.63	5.84	549.11	\$34,259	\$54,176	15	1	7.5	10	5	39	15
H38-C	Harrisonburg Recycling Center	Bioretention	1.60	1.36	4,881.62	30	70	73	1.44	13.60	1,230.55	\$87,687	\$60,779	14	3	7.5	10	5	39	16
H21	W. Market Street Basin No. 1	Enhancement	1.10	1.10	3,793.35	55	150	247	0.36	3.71	889.10	\$33,699	\$94,553	2	14	7.5	10	5	38	17
H19-B	Department of Community Development	Bioretention	0.28	0.22	806.59	12	50	28	0.14	1.31	112.84	\$5,468	\$40,388	21	0	7.5	5	5	38	18

Page | B-1

Stormwater Retrofit Opportunities Harrisonburg, VA

			(e)						(r)		_	Scoring						
Site ID	Site Description	Proposed Practice	Drainage Area (ac	Impervious Cover (acre)	Target WQv (cf)	Available Practice Width (ft)	Available Practice Length (ft)	% Water Quality Volume ¹	TP Removal (lb/yr	TN Removal (lb/yı	TSS Removal (lb/y	Cost \$	Cost Effectiveness (\$/lb TP removed)	Cost Effectiveness	Phosphorus Removal	Maintenance Burden	Potential Utility or Site Constraints	Aesthetics / Safety	Total Score	Rank
H50	Old South High St	Bioretention	1.59	0.91	3,681.18	32	70	88	1.22	13.19	913.48	\$79,301	\$65,059	13	2	7.5	10	5	38	19
H45-A	Spotswood Elementary School	Bioretention	1.14	0.83	3,109.82	42	48	81	0.97	9.68	792.50	\$61,703	\$63,386	13	2	7.5	10	5	38	20
H8-C	Waterman Elementary School	Dry Swale	0.21	0.21	724.19	8	96	100	0.23	2.09	209.05	\$14,535	\$61,959	13	0	7.5	10	5	36	21
H200	Heritage Oaks Golf Course	Bioretention	1.08	0.89	3,220.90	40	55	100	1.06	10.10	897.62	\$78,874	\$74,292	11	2	7.5	10	5	36	22
H30	Unused Parcel between Rt 11 and Railroad	Bioretention	1.32	0.55	2,511.60	15	70	50	0.71	8.60	467.88	\$30,809	\$43,322	19	1	7.5	5	2.5	36	23
H10-B	Lucy Simms Parking Lot	Bioretention	1.35	1.27	4,443.48	29	53	54	1.12	10.22	983.61	\$59,129	\$52,719	16	2	7.5	5	5	36	24
H38-B	Harrisonburg Public Works storage yard	Bioretention	0.70	0.63	2,228.46	15	100	96	0.72	6.65	624.19	\$52,496	\$72,896	11	1	7.5	10	5	35	25
H8-A	Waterman Elementary School	Bioretention	2.18	1.87	6,696.26	49	50	50	1.63	15.37	1,396.23	\$81,533	\$49,933	17	3	7.5	5	2.5	35	26
H28 - Option 3	Maryland Ave Fire Station (truck washing activities)	Bioretention	0.83	0.83	2,862.26	35	80	145	1.01	8.97	898.56	\$101,185	\$100,389	8	2	7.5	10	5	33	27
H22-B	Westover Park Parking Lot	Bioretention	0.94	0.94	3,241.59	45	50	103	1.06	9.40	941.79	\$81,368	\$76,992	11	2	7.5	5	5	30	28
Н9	Rockingham County Admin Bldg.	Bioretention	0.87	0.87	3,000.20	38	70	102	0.98	8.69	870.87	\$75,070	\$76,817	11	2	7.5	5	5	30	29
H8-B	Waterman Elementary School	Bioretention	0.49	0.43	1,530.77	25	51	100	0.50	4.67	431.75	\$37,506	\$74,773	11	1	7.5	5	5	30	30
H19-A	Department of Community Development	Bioretention	0.54	0.45	1,623.70	35	68	69	0.47	4.44	396.70	\$27,277	\$58,314	14	1	7.5	0	5	28	31
H16	Massanutten Regional Library	Stormwater Planter	0.10	0.10	344.85	3	24	32	0.06	0.54	54.34	\$4,178	\$68,509	12	0	7.5	0	5	25	32
H28 - Option 1	Maryland Ave Fire Station Driveway (truck washing activities)	Bioretention	0.23	0.23	793.16	30	80	344	0.32	2.71	263.36	\$66,810	\$210,949	4	1	7.5	0	5	17	33
H200- Alt	Heritage Oaks GC	Outfall Stabilization	100.0 0	5.00	93,109.50	15	30	5	16.26	308.4	2,493.49	\$220,320	\$13,552	35	32	15	10	5	97	Out lier 2
H15-A	County Court House	Landscape Maintenance	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H15-B	County Court House	Landscape Maintenance	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Page | B-2

Stormwater Retrofit Opportunities Harrisonburg, VA

													11							
			(ə						_	-	Ē					Sco	oring			
Site ID	Site Description	Proposed Practice	Drainage Area (acr	Impervious Cover (acre)	Target WQv (cf)	Available Practice Width (ft)	Available Practice Length (ft)	% Water Quality Volume ¹	TP Removal (lb/yr	TN Removal (lb/yr	TSS Removal (lb/y	Cost \$	Cost Effectiveness (\$/lb TP removed)	Cost Effectiveness	Phosphorus Removal	Maintenance Burden	Potential Utility or Site Constraints	Aesthetics / Safety	Total Score	Rank
H45-B	Spotswood Elementary School	Tree Planting/Re- forestation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H13- PP	City of Harrisonburg Hose Company #4	Pollution Prevention	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H14-IB	Harrison Plaza	Impacted Buffer	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H14- ER	Harrison Plaza	Bank Erosion	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H28 Option 2	Maryland Ave Firestation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H41- OT	A Dream Come True Playground	Outfall Stabilization	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H37- PP1	Harrisonburg Public Works	Pollution Prevention	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
H40	Stone Spring Elementary School	Landscape Maintenance	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
¹ This refe standard which to	¹ This refers to the percent of the Water Quality Volume (WQV) captured by the practice. For this application, the WQV is defined as the runoff generated by 1" of rainfall in the drainage area, which is the Virginia standard in the Runoff Reduction Method (see Section X for the associated computation). Since these are retrofit projects, they do not have a regulatory obligation to meet 100% of the WQV, but it is a good metric by which to compare projects.																			

² The Heritage Oaks RSC project was considered an outlier in terms of scoring, since it scored much higher than the other projects and thus skewed the scoring curve for other projects. The scores reported for the other projects are thus calculated <u>without</u> the Heritage Oaks project.

APPENDIX C: REGENERATIVE STORMWATER CONVEYANCE SYSTEMS

The following is a description by the firm, Biohabitats, Inc., of Regenerative Stormwater Conveyance systems (also sometimes call "step-pool conveyance" systems).

More Resources:

To see a newly constructed example of this type of practice, click on the link below to view a two-minute video by the Center for Watershed Protection, entitled, "Froelich Park Regenerative Step Pool Storm Conveyance Demo Project":

https://www.youtube.com/watch?v=PmmDJ3XG3SQ

Anne Arundel County, MD developed the first design specifications for this practice. Their <u>Regenerative Step Pool Conveyance Systems Design Guidelines</u> can be found at:

http://www.aacounty.org/DPW/Watershed/StepPoolStormConveyance.cfm#.UkCBd3-EWS8

REGENERATIVE STORMWATER CONVEYANCE: A New Tool to Effectively Mitigate Failed Stormwater Outfalls

INTRODUCTION

Regenerative stormwater conveyance (RSC) combines stormwater management with wetland and stream restoration. Applicable in new development, retrofit, and restoration scenarios, RSC uses carbon-rich, sand-bedded channels, wide parabolic grade control weirs, and shallow pools to collect and convey stormwater runoff (Figure 1). The practice can convey within a site, to other stormwater treatment practices in a treatment train, or from outfalls into receiving streams. This approach aligns with philosophies such as low impact development and green infrastructure.

STATUS QUO

Drainage infrastructure, whether it be simply conveyance based or intended for other stormwater management criteria (e.g., detention, channel protection), typically results in the concentration of flows at discrete outfall points. The result seen throughout urbanizing watersheds is impaired habitat, excessive erosion and transport of sediment and nutrients to downstream sinks (e.g., ponds, lakes, estuaries, etc.), and compromised infrastructure.

BASIC BUILDING BLOCKS

© Biohabitats. Inc.

RSC systems are open-channel, sand seepage filtering systems that utilize a series of shallow aquatic pools, riffle weir grade controls, native vegetation, and underlying sand channel to treat and safely attenuate and convey storm flow, and convert stormwater to groundwater through infiltration and below ground seepage (Figure 2). RSC systems combine features and treatment benefits of swales, infiltration, filtering, and wetland practices.

Establishing the sand seepage hydrology associated with an RSC system requires the creation of a series of well vegetated stilling pools, sand seepage beds replete with above and below ground biomass, and associated flow paths through low areas dominated by native wetland plants. The physical effect of the pools and their many plant stems is to reduce water velocity and facilitate removal of suspended particles and their associated nutrients and contaminants.

Figure 1. Examples of regenerative stormwater conveyance systems.

The cobble weirs set the surface water elevations and establish the hydraulic head necessary to drive the sand seepage system and support the plants. The sand seepage bed, with its 20%-by-volume green mulch, supports microbes, fungi, macroinvertebrates, and processes which remove nutrients and contaminants as they pass through the sand bed while maintaining porosity. The many roots present in the sand take up nutrients and provide sites for microbial attachment, contaminant adsorption, and longterm sequestration in the peat forming layer resulting from annual root formation of the fibric root mat.

Figure 2. Example conceptual profile from a regenerative stormwater conveyance project.

While RSC systems provide added structural stability via stone and sand to eroded outfalls and receiving streams, the vegetative material along the channel and in the bottoms of pools provides an important contribution to project sustainability by tying the system together and increasing the porosity of the pools. Once established, these systems are designed to restore the ecology of forest floor systems and be mostly self-maintaining.

STORMWATER MANAGEMENT BENEFITS

The systems combine features and treatment benefits of swales, infiltration, filtering, and wetland practices. They are designed to convey flows associated with events up to and including the extreme floods (i.e., 100-year storm) in a non-erosive manner, which results in reduced channel erosion impacts commonly associated with stormwater practice outfalls and receiving waters. Due to the ability to safely convey larger flows, these systems do not require flow splitters to divert smaller events to them for treatment. As part of the conveyance system, they also reduce the need for storm drain infrastructure. Finally, these RSC systems have the added benefit of providing dynamic and diverse ecosystems for a range of plants, animals, amphibians, and insects. These ecosystems enhance pollutant uptake and assimilation and provide a natural and native aesthetic to sites.

APPLICATION

RSC systems are unique in that they can be located on the front or tail end of a treatment system and still provide water quality and groundwater recharge benefits. They have been most commonly applied as a system at the downstream end of a stormwater treatment practice, such as a pond or wetland. Where located on the front end of a treatment train, they provide water quality, groundwater infiltration, and channel protection

treatment while also providing non-erosive flow conveyance that delivers flows to a supplemental stormwater treatment practice. RSC systems have multiple applications including within linear systems such as roads, highways, and conveyance from pipe outfalls to receiving waters.

CONCLUSION

RSC is a holistic approach to stormwater management whereby the natural regeneration of stream and wetland ecosystems is the driving performance standard, rather than the presumption that detention of a designated storm event will be of benefit to the downstream water bodies. Installation of these systems has multiple benefits including, less area of disturbance, lower costs, and opportunities for stakeholder stewardship and participation. The last of these benefits has been shown to be invaluable in terms of raising community awareness and helping to foster the important and often overlooked connection between humans and nature.

ACKNOWLEDGEMENTS

Much of the work to develop the regenerative stormwater conveyance approach has been led by Keith Underwood, of Underwood & Associates, in collaboration with Biohabitats, Inc.

2026 Murray Hill Road, Room 107 Cleveland, Ohio 44106 tel 216.921.4430 / fax 216.751.2087 www.biohabitats.com

120 Webster Street, Suite 326 Louisville, Kentucky 40206 tel 502.561.9300 / fax 502.561.9301 www.biohabitats.com Copyright ©: May 2009 Biohabitats, Inc. All rights reserved.

This copyrighted material represents the proprietary work product of Biohabitats, Inc. No use, reproduction, or distribution of this material or of the approaches it contains, is authorized without the prior express written consent of Biohabitats, Inc.